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Abstract Majority of shallow floodplain lake ecosystems of the middle and lower reaches of the Yangtze River (China) have
gone through serious eutrophication problems over the recent past. The severe environmental deterioration accompanied by
cyanobacterial blooms have become major water resource management challenges in the region. An advanced research method
is urgently needed to tackle these challenges. The concept of ecological resilience address pressing questions of non-linear
dynamics, threshold effects and regime shifts in shallow floodplain lakes, and help manage the ecosystem effectively. Pa-
laeolimnological techniques are important for assessing long term resilience and associated thresholds effects of shallow lake
ecosystems. However, the lack of reliable proxy methods available, the assessment of long term ecological resilience of shallow
Yangtze River lake systems has become increasingly difficult. Cladocerans (water fleas) play a central role in lacustrine food
webs by responding to external drivers and internal ecosystem processes in lakes. Their subfossils are well preserved and
becoming one of potential proxy indicators of lake ecosystems change for a longer time scale. This study explores the potential
application of subfossil cladocerans and their ephippia in assessing a long term ecological resilience and help better management
strategies of lake ecosystems and water resources of the middle and lower reaches of the Yangtze River in China.

Keywords Subfossil cladoceran, Yangtze River lake system, Food web, Ecological resilience, Regime shift, Threshold

Citation: Kattel G, Zhang K, Yang X. 2018. Application of subfossil cladocerans (water fleas) in assessing ecological resilience of shallow Yangtze River
floodplain lake systems (China). Science China Earth Sciences, 61: 1157–1168, https://doi.org/10.1007/s11430-017-9218-6

1. Introduction

The occurrences of alternative stable states behaviour are
well documented phenomena in many shallow floodplain
lakes of the large river systems worldwide (Scheffer et al.,
1993; Hilt et al., 2011; Kattel et al., 2016). When shallow
lakes are exposed to multiple environmental forces such as
land use change, nutrient loading, fisheries activities and
climate change, the cumulative impacts of these forcing can

lead to non-liner responses of ecosystems (Scheffer and
Carpenter, 2003). Better understanding of the mechanism
behind such complex, non-linear ecosystem processes can
help maintain ecological resilience of these lakes (Folke et
al., 2004). Resilience is a degree in which a system is capable
of self-organizing, when exposed to stressors (Holling,
1973). In growing environmental pressures, resilience can
erode rapidly and the self-repairing capacity of ecosystems
may be weakened, and the desirable goods and services of
the ecosystems can also be lost (Folke et al., 2004). For
example, a highly eutrophic, turbid lake system has limited
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value for drinking water, recreation and fisheries due to poor
water quality. Resource managers are willing to achieve the
clear-water state by putting more efforts to minimize the
nutrient loads. However, the positive and negative feedback
mechanisms in the lake system significantly hamper the
successful management efforts for maintaining the ecologi-
cal resilience (Folke, 2003).
In shallow lakes, the clear water, macrophyte-dominated

state prevails at low nutrient levels, while the high level of
nutrients is found at turbid water state with dominant phy-
toplankton (Scheffer and Jeppesen, 2007). The stabilization
of clear water state and increased water transparency is
strongly supported by sub-merged macrophytes (van Nes et
al., 2002; Ibelings et al., 2007; Ziegler et al., 2015) by re-
ducing sediment resuspension, trapping periphyton and
competing for nutrients with algae and providing a refuge for
zooplankton against fish predation (Jackson, 2003; Hilt et al.,
2011). However, the turbid water state, where the dense
bloom of filamentous algae can increase shading effects on
underwater vegetation. The absence of under water plants
and the feeding behaviour of benthivorous fish facilitate
wind-driven sediment resuspension and increase eu-

trophication (Brönmark et al., 2010). An abrupt transition
can occur any time when the intensity of external drivers
exceeds a threshold that defines the limit (benchmark) of the
capacity of feedback mechanisms to maintain stability of
lake ecosystems (Figure 1). The alternative stabilizing fac-
tors also tend to remain in the same state despite the changes
in external conditions, a process called ‘hysteresis’ and is
dependent on resilience of the lake system (Carpenter and
Cottingham, 1997). Hence, a resilient system is assumed to
absorb disturbance without shifting to an alternative stable
state (Folke et al., 2004).
The shallow lake systems in the middle and lower reaches

of the Yangtze River are highly productive lake systems,
which show increased interactions among physical, chemical
and biological assemblages (Guo et al., 2013). Fisheries have
been widely practiced in these lakes over the past century
with strong cascading effects on trophic levels affecting
dynamics of algal and submerged macrophyte populations.
Overstocking of carps in many Yangtze River lake systems
has caused intense water quality problems due to loss of
submerged macrophytes and subsequent increase in algal
biomass (Guo et al., 2013). The increased mobilization of

Figure 1 Schematic representation of the loss of positively consorted ecological resilience and regime shifts in shallow lakes caused by external driving
forces and internal feedback mechanisms (adapted after Deutsch et al., 2003). Water clarity (a) remains stable until the nutrient loading (b) is exacerbated by,
for example, extreme flood events (c) consequently pushing the system beyond a critical threshold when the lake shifts abruptly to a turbid or eutrophic state
(d). The red ball represents the system moving from one regime to the other (or the basins of attraction). Cumulative changes in system variables can lead to a
gradual loss of resilience the depth of the basin becomes shallower up to a point where even a small disturbance can push the system into a new basin of
attraction, under a different regime. When a system shifts into a new regime, it reaches and is kept in a new state by internal feedback dynamics characteristic
to that regime. This makes the recovery to the previous regime is very difficult, especially when lag effects in the system’s response hinder its recovery (i.e.,
hysteresis, also see Figure 3). Transitions associated with drivers acting of shorter timescales may be cyclical in nature where the system resilience can be
managed. However, those drivers acting over longer periods are less likely to get reversed (Lenton et al., 2008; Hughes et al., 2013).
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nutrients from fisheries and catchments together with
growing urbanisation and sewage disposal, all have pro-
foundly implicated for the dynamics of macrophyte, zoo-
plankton and fish populations in the region (Yin and Li,
2001; Wu et al., 2007; Yu et al., 2009; Guan et al., 2011;
Zhang et al., 2012). Further, flow regulation by dams in
rivers has disrupted natural hydrological regime and con-
nectivity of lakes affecting the ecosystem processes (Yang et
al., 2006). Many shallow floodplain lakes across the middle
and lower reaches of the Yangtze River today are trans-
formed into ‘hypereutrophic’ conditions with reduced eco-
logical resilience (Liu et al., 2012).
Today, managing a lake together with the maintenance of

ecological resilience of shallow Yangtze River lake systems
has become an increasingly challenging task. A major pro-
blem is that lack of available long term monitoring data,
which provide “anecdotal” support and offer improved un-
derstanding of underlying mechanisms of the lake ecosystem
processes. In the absence of monitoring data, palaeolimno-
logical methods provide the means to track centennial-and
millennial-scale changes in the ecosystem structure and
function of lakes, and help understanding the ecosystem re-
sponses to anthropogenic and climatic impacts. The pa-
laeolimnological techniques are successfully applied for
reconstructing past ecological conditions, and accurately
tracked the regime shifts of shallow lakes in Europe and
Australia (Davidson et al., 2010; Kattel et al., 2017). How-
ever, until recently, the multi-proxy application of lake se-
dimentary records for assessing ecological resilience of the
Yangtze River lake system is rare.

Cladocerans (water fleas, Figure 2) play an intermediary
role in food web structure and dynamics by showing strong
sensitivity to lake environmental change (Persson et al.,
2007; Kattel et al., 2008; Adamczuk, 2016). They transfer
carbon energy and nutrient masses across the trophic system
enhancing ecological stability and resilience (e.g. Figure 2;
Post, 2002; Kuiper et al., 2015). The subfossil of cladocerans
and their ephippial cover (Figure 2) are composed of chitin
(chemical compound), which enables them to preserve in
lake sediments after death (Korhola and Rautio, 2001).
Hence, the ephippia, headshields, shells and post-abdomens
of cladocerans retrieved from lake sediments have potential
application for both qualitative and quantitative reconstruc-
tions of past environmental change and ecosystem processes
over various time scales. For example, cladocerans have
shown an extraordinary tolerance to low water temperature
during the last glacial maximum (LGM) (Kattel and Au-
gustinus, 2010) as well as resilience to progressive climate
warming, catchment vegetation change, nutrient dynamics
and eutrophication during the postglacial and the Holocene
periods (Nevalainen and Luoto, 2012; Beck et al., 2018).
Understanding of the long term ecological and hydrological
processes and associated regime shifts of the shallow
Yangtze River floodplains lakes using subfossil cladocerans
can offer an excellent opportunity to assess ecological resi-
lience of these lakes (Kattel et al., 2016). Cladoceran sub-
fossils have been used to identify the deviation of lake
ecosystems due to anthropogenic and other associated im-
pacts including climate driven effects in the past (Jeppesen et
al., 2001). However, the feedbacks, thresholds and resilience

Figure 2 Cladocerans and their role in food web structure and dynamics of shallow large river floodplain lakes. A, B: Littoral species of Chydorid
Cladocera (Chydorus sphaericus) and its fossil (Headshield of Alona affinis); C, D: Open water species of Bosminid Cladocera (Bosmina coregoni) and its
fossil (Headshield of Bosmina coregoni). E: A simple schematic framework of the movement of carbon and nitrogen from the base of the food web, where
cladocerans play a central role in carbon energy and nutrient mass flows via the macrophytes, algae and the microbial loop (bacteria, ciliates and heteotrophic
flagellates) before transferring to the higher trophic levels such as planktivorous and benthivorous fish as well as piscivorous fish in shallow lakes. Carbon
and nutrient mass will then recycled back to the system via detritus.
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associated with ecosystem changes are not comprehensively
investigated in the middle and lower Yangtze River system.
Advancement of some methods using subfossil cladocerans
and the stable isotope ratios of carbon and nitrogen extracted
from chitin, have indicated the shift in ecological resilience
due to changes in food web structure and functions of lakes
in Europe and Australia during the past (Davidson et al.,
2010; Perga, 2010; Kattel et al., 2014). Here, we explore the
state of resilience of the middle and lower reaches of the
Yangtze River lake system in China as well as the potential
application of subfossil cladocerans and the stable isotopes
of carbon and nitrogen in assessing the long term ecological
resilience.

2. Loss of ecological resilience of the middle and
lower Yangtze River lake systems

Over the millennia, the complex floodplain lake ecosystems
across the middle to lower reaches of the Yangtze River have
made significant, ecological and economic contributions to
the society (Cui et al., 2013; Xu et al., 2017). However, today
these lakes have experienced significant ecological trans-
formation due to severe climatic, ecologic and hydrologic
shifts including widespread land reclamation, irrigation, and
domestic and industrial water usage (Wu et al., 2007; Yu et
al., 2009; Zhang et al., 2012). The construction of dams and
water impoundments has altered downstream hydrological
regimes, modified channel morphology, and predictive
concomitant increase in erosion and sedimentation (Liu et
al., 2013). The sediment and nutrient loads have reduced

flood retention capacity and enhanced eutrophication (Kong
et al., 2015). Particularly after the c. 1960s river regulation,
the natural flow regimes of the Yangtze River that main-
tained flood pulses and the healthy wetlands, are profoundly
disrupted (Zhang et al., 2012). The nutrient enrichment in
lake systems is thought to have led to regime shifts from
clear (positively resilient) regime to turbid and eutrophic
(negatively resilient) state (Kong et al., 2015; also see Figure
3).

3. History of ecological thresholds in Yangtze
River lake systems

Thresholds exist in nonlinear ecosystem, which tend to col-
lapse from more desirable (e.g. good water quality) to less
desirable (poor water quality) state (Folke et al., 2004;
Groffman et al., 2006). Thresholds are also scale-dependent
and caused by multiple drivers, demonstrating increased
need for knowledge and analyses to address pressing issues
of the management of ecological resilience (Briske et al.,
2010).
The middle and lower reaches of the Yangtze River lake

systems have experienced severe “shocks” over the past
century (Table 1), which may have lead the system to cross
the thresholds (e.g. exceedance of total nutrient limit). The
first evidence of a dramatic decline in the lake area during the
1860s in the lower basin was reported by Du et al. (2011).
The rapid decline in lake area coincided with periods of land
reclamation and increased sediment deposition. During the
1950s, the total phosphorous enrichment in the Yangtze

Figure 3 Conceptual frameworks on ecological resilience of the typical shallow Yangtze River floodplain lakes. (a) (Impacts over time vs water quantity)
shows the changes in quantity of water or environmental flow regime (red curve) prior and after the river regulation over the past century. Following river
regulation in the 1960s, many floodplain lakes have undergone lower water volume due to the construction of barrier in the upstream river and channel
disconnectivity. (b) (Impacts over time vs water quality) shows the cumulative effects of nutrients on water quality and ecosystem regimes (blue curve). At
around 1960 (T1), the water quality and ecosystem began to switch from clear to turbid state. However, at the point T2, the additional loads of nutrients
(critical level) switched the ecosystem into a turbid state. The time between T1 and T2 (the dash line) is called ‘hysteresis’ when the ecosystem tried to recover
to its original phase (clear water).
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River lake systems exceeded 100 μg L−1 levels as a result of
increased land use activities. These actions substantially re-
duced macrophyte density and benthic pathways of primary
productivity (Zhang et al., 2012). The impacts on lake sys-
tems were severed during the Great Leap Forward (1960s).
This period witnessed famine leading to widespread loss of
natural resources across the catchments and increased eu-
trophication (Dong et al., 2012). By the 1970s, following the
construction of dams and weirs in the river system, reservoirs
and lakes were heavily used for commercial fisheries, which
had significant implications for eutrophication and water
quality (Guan et al., 2011; Kong et al., 2015). The economic
reforms in the 1980s invested in development of water in-
frastructures leading to widespread ecological degradation
(Dong et al., 2008). Further development in infrastructures in
the 1990s significantly reduced river flow and river-lake
connectivity resulting in unprecedented flood frequencies in
the river system. The flood events have become catastrophic
for lake ecosystems by bringing the large amount of carbon,
salt, nutrients and sediments from the catchments (Wu et al.,
2006). Since the early 2000s, the operation of large scale
infrastructures such as the Three Gorges Dam (TGD) and the
South to North Water Diversion Project (SNWDP) in the
upstream Yangtze River system, have made basin wide
changes of downstream habitats and ecosystem structure and
function due to severe modification of river channels, hy-
drological flows and sedimentation (Sun et al., 2012; Akyuz
et al., 2014; Yang et al., 2015; Huang et al., 2016). These
large scale landscape level modifications for agricultural,
industrial and urban development over the recent past are
thought to have caused profound implications for ecosystem
thresholds, regime shifts and resilience of the Yangtze River
lake system (Kong et al., 2015; Table 1).

4. Application of subfossil cladocerans in as-
sessing ecological resilience of the Yangtze River
lake systems

Food-web theory increasingly elucidates the stability and
resilience of shallow lake ecosystems. The presence of
complex networks of trophic interactions in lacustrine eco-
systems is thought to reflect the flow dynamics of carbon
energy and nutrient masses across the system, which helps
stabilize the ecosystem structure and functions for a longer
period. Hence, the food webs provide an explicit link be-
tween the community structure and the maintenance of
ecosystem processes in lakes (Kuiper et al., 2015). In this
aspect, the cladocerans play a central role in food web
structure, which is largely determined by the dynamics of
nutrients, and fish and macrophyte community (Persson et
al., 2007; Korosi et al., 2013). Increased nutrient loading and
fish predation on larger cladocerans (such as Daphnia,

Eurycercus), for instance, can induce eutrophication (Leavitt
et al., 1989; Jeppesen et al., 2001). Pelagic Daphnia and
Bosmina can depress microbial densities including bacteria,
ciliata and heterotrophic nano-flagellates (DeMott, 1982)
and contribute to food web, carbon cycling and nutrient re-
mineralization (Adamczuk, 2016; also see Figure 1). How-
ever, due to variations in body size, food preferences and
cyclomorophosis as well as the interactions with plankti-
vorous fish, Daphnia and Bosmina can mobilize planktonic
food webs and ecosystem processes differently. While
Daphnia is selected primarily by planktivorous fish, smaller
size Bosmina is vulnerable to invertebrate predation (Jep-
pesen et al., 2001). However, in absence of Daphnia, fish
may rely on larger Bosmina. The competition for food re-
sources for example phytoplankton dynamics and complex
predator-prey interactions increase when both planktonic
species co-exist (Korosi et al., 2013). Benthic cladocerans,
on the other hand, also utilize the detritus and littoral sub-
merged macrophyte community and significantly contribute
to the predator-prey interactions in the benthic environment
(Whiteside and Swindoll, 1988; de Eyto et al., 2003).
Hence, any deviation of planktonic and littoral cladoceran

habitats can alter primary production, trophic pathways and
food web dynamics (Liu et al., 2006). Both littoral and
planktonic cladocerans are also able to reflect the internal
dynamics (energy and nutrient mass flows) of the lake sys-
tems (e.g. Carpenter and Brock, 2004). In absence of mon-
itoring data, subfossil cladocerans can have potential to infer
the long term internally-mediated palaeo-food web structure
and trophic dynamics of lakes (Leavitt et al., 1989; Jeppesen
et al., 2000, 2002; Kattel et al., 2014). For instance, varia-
bility in mandible size (Kerfoot, 1974), length of carapaces
and mucro of Bosmina (Hann et al., 1994; Alexander and
Hotchkiss, 2010), ephippial size (Schilder et al., 2015a) and
the proportion ofDaphnia to total abundance ofDaphnia and
Bosmina (Kitchell and Kitchell, 1980) can show strong
cascading effects of fish predation on cladoceran community.
Studies suggest that lakes with moderate fish predation of
planktivorous fish usually contain cladocerans (Bosmina)
with short mucros (Korosi et al., 2013). Similarly, shift in the
remains of Bosminid with long-appendaged morphotype to a
short-appendaged morphotypes infer presence of dominant
predators in the lake (Kerfoot, 1981). Extended dominance
of forma cornuta is a response to low invertebrate predation,
where the proportion of cornuta to morphotypes with long
Bosminid anttennules is an indicator of fish predation
(Adamczuk, 2016). Increased composition of the remains of
Bosmina longirostris in shallow lakes indicates elevated
nutrient loads and eutrophication (Nevalainen and Luoto,
2012; Nevalainen et al., 2013). The replacement of the re-
mains of Bosmina coregoni and Bosmina longispina by B.
longirostris suggests the succession of clear water lakes into
the eutrophic state (Adamczuk, 2016).
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Bosmina coregoni and B. longirostris are dominant cla-
docerans, and the proportion of their remains is directly
preserved in sediments of the Yangtze River lakes (Sun et al.,
2012; Kattel et al., 2016). The proportion of the microfossils
of Bosmina longirostris to the sum of B. longirostris and B.
coregoni can serve as significant indicators of past changes
in fish predation (Jeppesen et al., 2001). However, re-
construction of past food web based on Bosmina remains is
difficult since Eubosmina is a species-complex of different
species of cladocerans, such as of Bosmina coregoni and
Bosmina longispina. As the body size including the length
and shape of mucros and antennules of Eubosmina are lar-
gely determined by predation pressure of fish and in-
vertebrates, identification of the remains of Bosmina based
on species-specific predation by fish and feature of body
parts makes difficult to detect shift of ecological resilience
(Korosi et al., 2013). In addition, a number of abiotic factors
(nutrients, pH, heavy metals and temperature) also influence
the size and shape of cladocerans and their ephippia, and
makes reconstruction of past food webs and ecosystem
structures is difficult based on their remains. Further, cla-
doceran ephippia have potential to provide information re-
garding fish populations, feeding patterns and disturbances
in the past. An inverse relationship between the density of
fish and the concentration of Daphnia ephippia in sediments
can be used for reconstruction of fish populations (Jeppesen
et al., 2001). Similarly, the hatchability of fossilized ephippia
isolated from the sediments can aid reconstruction of genetic
changes associated with environmental perturbations in-
cluding toxic algal blooms and inputs of toxic substances
(Jeppesen et al., 2001). However, records available on long
term dynamics of cladocerans and their ephippia in the
middle and lower reaches of the Yangtze River lakes are rare.
In addition, poor preservation of subfossil Daphnia in sedi-
ments is hindering the comprehensive understanding of a
long term ecological resilience in the region.
River regulation, increased land reclamation and the use of

fertilizers across the middle and lower reaches of the Yangtze
River lake systems during the 1960s had considerable im-

plications for river-lake connectivity, water depth and lake
habitats. A framework (Figure 4a and b) for changes in
ecological resilience is developed based on various studies in
the region (Guo and Li, 2003; Dong et al., 2008; Guan et al.,
2011; Kattel et al., 2016). For example, Kong et al. (2016)
reported a decline of food web structure dynamics and eco-
system functioning of Chaohu Lake during the 1950s, 1980s
and 2000s, where different functional groups indicated de-
creasing biodiversity and trophic interactions. Similarly, in
Lake Taihu, since the 1980s, the chemical oxygen demand,
the TP and TN all have increased with corresponding decline
in littoral macrophytes, increased sediment resuspension,
poor water quality and increased biomasses of phytoplankton
and smaller zooplankton (Zhang et al., 2006; Guan et al.,
2011). The palaeolimnological study of cladocerans in
Zhangdu Lake by Kattel et al. (2016) has also showed that
species preferring to shallow and nutrient rich water bodies
such as small Alona (A. guttata) and their ephippia prevailed
the system following the anthropogenic disturbances in the
region. Climate change, river regulation together with eu-
trophication and intensive fisheries activities were thought to
have played a major role. The cumulative effects, particu-
larly after the early-to-mid-2000s may have caused sig-
nificant loss of sub-merged vegetation and growth of
phytoplankton leading to unprecedented eutrophication
(Guan et al., 2011; Zhang et al., 2016). The widespread cage
culture activities have enriched the exogenous nutrients such
as TN and TP in the lake water. The food residues of fish
from the cage were reported to release as high as 1532.9 kg
(TN) and 339.2 kg (TP) within the 1000m2 areas showing
reduced diversity, composition and biomass of cladocerans
(Guo and Li, 2003). In the recent past, the nutrient enrich-
ment together with increased lake water temperature has led
to the succession of cyanobacteria, such as Mycrocystis
community in Lake Taihu (Deng et al., 2014; Shi et al.,
2017). Diversity and composition of Daphnia sp. in Yangtze
River lakes are rarely reported. However, a few studies,
suggest that increased human activities and environmental
changes may have led to genetic divergence of Daphnia

Table 1 Chronology of “shocks” and possible threshold effects on ecosystems of the Yangtze River lake system over the past century

Year Shocks/Events Possible threshold effects in lakes Reference

1860s Channel modification Changes in sediment-water fluxes Du et al., 2011

1950s Use of fertilizer for agriculture Increased load of total phosphorous Zhang et al., 2012

1960s Great Leap Forward Famine and widespread loss of natural resources Dearing et al., 2012

1970 Increased reservoirs and commercial fisheries Eutrophication and changes in water quantity Kong et al., 2015

1980s Economic reforms, investment in agriculture Increased ecological degradation Dong et al., 2008

1990s Large decline in flows and increased flood frequency Mesotrophication to hyper-eutrophication of lakes Wu et al., 2006

2000s Rapid economic growth, large scale infrastructure
development, operation of the Three Gorges Dam

Large scale aquatic habitat loss, impacts on fish
movement, reduced ecosystem functioning

Sun et al., 2012
Huang et al., 2016

2010s Large scale infrastructure development, operation of the
south-to-north water transfer project

Significant downstream decline in water and
sediment discharge

Akyuz et al., 2014
Yang et al., 2015
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pulex in the region. About 9% and 10.5% average genetic
divergence of D. pulex found in 10 water bodies of the
middle and lower reaches of the Yangtze River indicate that
the species may have evolved into different subspecies due to
the regional environmental changes (Wang et al., 2016).
Daphnia no longer co-exists in lakes exposed to prolonged
eutrophication. For example, the Taihu Lake show that
smaller cladocerans, Bosmina coregoni and Ceriodaphina
cornuta are dominant during Microcystis bloom indicating
Microcystis may be favoured largely by these small-sized
cladocerans (Sun et al., 2012). An analysis of cladoceran
remains from Lake Taihu, also show that more than 95% of
total cladocerans in the lake are composed by Bosmina (B.
coregoni and B. longirostris). Retrieve of increasing number
of cladcoeran ephippia from the sediment of Zhangdu and
Liangzi Lakes (Kattel et al., 2016) together with toxic cya-
nobacterial bloom of Mycrocystis in Taihu and Chaohu
Lakes (Sun et al., 2012; Kong et al., 2016) are an indicative
of ecological stress and reduced resilience (see Figure 4).
Studies suggest that cladocerans produce ephippia at a time
of stress (Kattel et al., 2017).
In addition, cladocerans are also found to be powerful

indicators for the internally-mediated food web structure and
dynamics (carbon energy and nutrient mass flows across the
trophic levels as shown by δ13C and δ15N values) in the past
in Europe, Australia and North America (Struck et al., 1998;
Post, 2002; Perga and Gerdeaux, 2006; Frossard et al., 2014;
Kattel et al., 2014). The cladoceran community in the
Yangtze River lake system is likely to be dependent on
multiple sourced-food webs (Liu et al., 2006; Guo et al.,
2013). Littoral cladocerans are dependent largely on detritus
and macrophyte-derived-food from shoreline habitats, while
the planktonic Daphnia and Bosmina are predominantly
supplied by open water phytoplankton. Unravelling the in-
ternally-mediated food webs by advancing the more so-
phisticated methods of subfossil cladocerans would be
crucial for the assessment of long term ecological resilience
of these lakes (e.g. Kuiper et al., 2015).

5. Development of a conceptual framework on
cladoceran-inferred internally-mediated food
web dynamics and ecological resilience in
Yangtze River lake system

Cladocerans show contrasting food and micro-habitat pre-
ferences (Jeppesen et al., 2001). A shift in functional group
of these animals is an indicative of changes in food web
structure and dynamics in an ecosystem over temporal and
spatial scales (Jeppesen et al., 2001; 2002; Korosi et al.,
2013; Liu et al., 2013). Stable isotope values of carbon and
nitrogen (δ13C and δ15N) in subfossil cladocerans (e.g.,
Chydorids, Daphnids, Bosminids) provide one of the most

sophisticated insights into the source of energy and nutrient
mass flows in the food web (Post, 2002; Perga and Gerdeaux,
2006; Perga, 2010; Frossard et al., 2014; Kattel et al., 2014;
Schilder et al., 2015b). A conceptual framework (Figure 5) is
developed for an internally-mediated cladoceran-inferred
food web structure and dynamics and ecological resilience of
the Yangtze River lake systems. Unfortunately, no data are
available on the δ13C and δ15N values of subfossil cladocer-
ans in the region. However, with a view to improve the
framework in future, the dynamics of the δ13C and δ15N va-
lues in shallow lake organic sediments in the region and
elsewhere have been assessed (Wu et al., 2006; Kattel et al.,
2014; Mao et al., 2012, 2014; Xu et al., 2016). Prior to the
1960s, existence of a diverse macrophyte-rich lake (resilient)
system prevailed supporting the benthic chydorids, as well as
the planktonic daphnids (Cui et al., 2013). In a resilient
ecosystem, the increased standing phytoplankton biomass
will be limited by Daphnia grazing and a macrophyte-
dominated food web will persist in presence of light (Folke,
2003; Zhang et al., 2016). The increased abundance of biota
also reflects their reproductive success and biological di-
versity. The δ13C and δ15N extracted from subfossil Chy-
dorids and Daphnids can provide precise information of diet
predominantly derived from the littoral submerged vegeta-
tion as well as planktonic algae (Kattel et al., 2014). How-
ever, nitrogen enrichment in cladocerans (mostly Bosminds
and smaller Chydorids) may be evident when the lake is
eutrophic and devoid of submerged macrophyte. In a shallow
hypereutrophic lake, study suggests that plantkivorous fish
would receive as high as 85% of δ15N enriched zooplankton
diet (Gu et al., 1996). Following the 1960s, the increased
catchment disturbances including land reclamation, growing
fisheries activities and increased sediment resuspension
across the shallow Yangtze River lakes substantially altered
the lake habitats and ecosystem processes (Zhang et al.,
2006; Yang et al., 2015). An increased predation pressure by
piscivores on planktovores, for example, can increase the
impact on photic zone, as the control of Daphnia and chy-
dorid cladocerans by planktivorours and benthivorous fish
will be limited, inducing the growth of submerged macro-
phyte community or vice versa (Jeppesen et al., 2001). Data
also suggest that fish such as carps can significantly affect
species abundance and diversity of macrophytes and zoo-
plankton and macro-invertebrate communities (Miller and
Crowl, 2006; Kong et al., 2016). When the condition is
persisted either way for a longer period an alternative stable
state switch can occur in response to a shock with positive or
negative feedback mechanism (Scheffer and Jeppesen,
2007). During the period of eutrophication (1960s–2000s),
for example, the number of trophic species and trophic links
in lakes are reported to have declined indicating that the food
web structure of highly eutrophic lakes, such as Taihu had
significantly low available carbon energy flow (Xu et al.,
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2016) while with rich nitrogen mass transfer in Longgan
Lake from the base of the food web (Wu et al., 2008). Mao et
al. (2014) reported more depleted δ13C and enriched δ15N
isotope values of organic matter sources and consumers such
as zooplankton (other than cladocerans) were found in the
phytoplankton-dominated lake region than in the macro-
phyte-dominated region of the Lake Taihu. Such transfor-
mation of the depleted carbon energy, and enriched nitrogen
mass from the base of the food web is likely to influence the
more susceptible species (e.g. littoral chydorids) to extinc-
tion when eutrophication causes decline in their food sources
(Xu et al., 2016). However, it is important to note that the
dynamics of δ13C and δ15N isotope values in consumers in-
cluding cladocerans in shallow Yangtze River lakes are lar-
gely dependent on the source of primary producers, which
are influenced by various factors including type of littoral
zone, suspended particles in the open water zone, catchment
vegetation and land use change practices, seasonal changes,
fish-zooplankton interactions and discrimination of carbon
and nitrogen during assimmilation. For example, Wu et al.
(2007) found differences in δ13C and δ15N enrichments in C3

plants and organic soil dominated catchments. Li et al.
(2010) reported the δ15N enrichment in Yangtze River was
from the high livestock waste release into the water. Mao et
al. (2014) found that the suspended particulate organic
matter contributed to depleted δ13C and enriched δ15N values
among consumers in Taihu Lake. However, Wu et al. (2006)
argued that the 13C-enrichment of organic matter may also
occur at periods of high productivity with limited aqueous
CO2 availability, causing a decrease in isotopic discrimina-

tion during photosynthesis.
Hence, the study of stable isotopes of carbon and nitrogen

in subfossil cladocerans (Chydorids, Daphnids, and Bosmi-
nids) is significant, and can potentially reveal feedbacks at
the molecular level over a temporal scale (Perga, 2010).
Various literature suggest that the ecological resilience of the
Yangtze River lake systems is thought to have declined
significantly since the early 2000s as a result of the cumu-
lative effects of multiple stressors including rapid develop-
ment of infrastructures, commercial fisheries, and recent
climate warming episodes (Mao et al., 2012, 2014; Kong et
al., 2015). The widespread impacts on Yangtze River lake
systems today have led to a new variant of cyanobacterial
growth altering water quality, increased toxicity and health
hazards in the local people (e.g. Zhang et al., 2009; de
Kluijver et al., 2012). The application of subfossil cladoceran
assemblages, their diversity as well as carbon and nitrogen
stable isotopes extracted from their remains could be po-
tentially powerful tool to assess ecological resilience,
thresholds effects and regime shifts of the Yangtze River lake
system over the longer time scale.

6. Conclusions

Conservation and management of biodiversity and ecosys-
tem structure and function should be regarded as one of
important management strategies for maximizing the large
river floodplains lake ecosystems resilience and ecosystem
services. Coupled human-climate disturbances have con-

Figure 4 Ecological resilience of the Yangtze River floodplain lake systems over the past century based on the evidence of fossil cladocerans in Zhangdu
Lake (a) over the past century as well as the conceptual framework on the loss of resilience following the various literature reviews (b). The hydrological shift
caused by river regulation in the1960s led to reduced water level followed by decline in the abundance of Bosmina (planktonic species) and increased
concentration of cladoceran ephippia (left panel). Meantime, the increased abundance of small Alona (A. guttata) indicated eutrophication prevailing high
density of phytoplankton and loss of sub-merged macrophyte density. Introduction of phytovorous and other omnivorous fish (e.g. carps) in some lakes may
have triggered the loss of macrophyte density and reduced the ecological resilience further (right panel).
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siderable implications for degradation of shallow floodplain
lakes ecosystems in the middle and lower reaches of the
Yangtze River. Rehabilitating these lakes as a healthy,
functioning ecosystem is becoming increasingly challenging
task as a result of the cumulative effects of multiple stressors.
Palaeolimnology offers an excellent opportunity to under-
stand the threats posed by external driving forces as well as
the intrinsic ecological processes. Assessment of ecological
resilience is essential to recognize disturbances in the past
and associated feedback mechanisms, threshold effects and
regime shifts. Subfossil cladocerans play a central role in the
lake ecosystems and food web structure and dynamics
through carbon energy and nutrient mass flows across the
trophic levels. The fossil assemblages, diversity and the
stable carbon and nitrogen isotopic records of cladocerans
have potential application for assessing long term ecological

resilience. The conceptual framework presented in this study
is the first step to advance the method in their application in
both temporal and spatial scales of the Yangtze River lake
systems. The advancement of such sophisticated techniques
is urgently needed to tackle the growing challenges of the
water resource management and the maintenance of eco-
system services in the lower Yangtze River basin.
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food web of the shallow lowland eutrophic lake systems in the middle and lower Yangtze River, where the three functional groups of consumers (Chydorid,
Daphnid or Bosmind) of cladocerans are thought to play a key role (see text for further details). Prior to the 1960s, the ecosystem was resilient, where the
carbon energy flow from the base of the food web was considered relatively high (13C-enriched cladocerans). Carbon derived from the submerged
macrophytes and good quality algae were assimilated by benthic Chydorids and large filter feeding cladocerans (Daphnids), subsequently transferring to the
higher trophic levels. However, following the 1960s, Daphnids and Chydorids are gradually replaced by smaller consumer zooplankton such as Bosminids
(mesotrophic and eutrophic species) feeding preferentially 15N enriched cyanobacteria (also see Mao et al. 2014). Further pressures in the system, such as the
commercial fisheries activities during the 1990s and after, and development of infrastructures (dams and weirs in the river), have made positive feedbacks in
the system with widespread loss of macrophyte community enhancing the cyanobacterial bloom such as Mycrocystis (e.g. Zhang et al., 2009) with depleted
13C, but enriched 15N, transferring primarily to Bosminids (B. coregoni) then to the higher trophic levels (also see Figure 2).
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